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ABSTRACT 
Acquiring small targets on a tablet or touch screen can be chal-
lenging. To address the problem, researchers have proposed tech-
niques that enlarge the effective size of targets by extending tar-
gets into adjacent screen space. When applied to targets organized 
in clusters, however, these techniques show little effect because 
there is no space to grow into. Unfortunately, target clusters are 
common in many popular applications. We present Starburst, a 
space partitioning algorithm that works for target clusters. Star-
burst identifies areas of available screen space, grows a line from 
each target into the available space, and then expands that line 
into a clickable surface. We present the basic algorithm and ex-
tensions. We then present 2 user studies in which Starburst led to 
a reduction in error rate by factors of 9 and 3 compared to tradi-
tional target expansion. 
ACM Classification: H5.2 [Information interfaces and presenta-
tion]: User Interfaces. - Graphical user interfaces. 
Keywords: target acquisition, target expansion, labeling, Vo-
ronoi, mouse, pen, touch input. blutwurst 
1. INTRODUCTION 
Acquiring a small target on a computer screen can be challenging, 
resulting in long targeting times and high error rates. One tech-
nique designed to help users acquire small targets is snap-to-target 
(e.g., [23]), which continuously sets the selection focus to the 
closest target. Snap-to-target effectively partitions screen space. 
Figure 1b labels pixels according to which target they snap to; the 
result is a so-called Voronoi tessellation [12]. Users benefit from 
this target expansion: instead of having to aim for the small target, 
users click anywhere inside the tile containing the target. This 
generally reduces targeting time and error rate. 
Unfortunately, performance benefits depend on the homogeneity 
of the target layout. When applied to a target located inside a 
cluster of targets snap-to-target shows little effect. As illustrated 
by Figure 1b, targets located inside a cluster are surrounded by 
little empty screen space. As a result, the tiles generated by the 
expansion are small—associated targets remain hard to acquire. 
When used on a device with imprecise input, such as a touch-
screen kiosk, the acquisition of such targets will be error prone. 
The same holds for pen input, as we demonstrate in the two user 
studies presented in this paper. 
In real-world applications locally dense clusters of targets emerge 
for a variety of reasons. The user interface may represent a real-
world geometry with a non-uniform structure, such as cities on a 
map (Figure 2a). In other cases, it is users who manually create 
clusters, e.g., when grouping icons on their desktops or when 
organizing links inside a web page (Figure 2b and c). Or clusters 
may emerge from the structure of visualized data (Figure 2d). 
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Figure 1: (a b) Traditional snap-to-target techniques expand 

targets into immediately adjacent space. For targets located 
inside a cluster, however, that expansion is minimal. 

(a c d) The proposed Starburst algorithm connects targets to 
peripheral screen space to produce reasonably sized tiles for 

all targets, including those located inside a target cluster. 

Limitations in handling target clusters are not unique to snap-to-
target, but faced by all techniques based on the repartitioning of 
screen space, such as Bubble Cursor [14]. Some techniques even 
impact performance negatively if applied to target clusters. Inter-
actions between closely adjacent Expanding Targets cause targets 
to “escape” from the user [22], resulting in a fisheye navigation 
problem, as discussed by Gutwin [17]. 
We propose addressing the problem by expanding targets in a 
goal-directed way. 
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Figure 2: Non-uniform target distributions are commonplace. 
Examples: (a) yellow-page application showing a map of res-
taurants, (b) icons on a computer desktop, (c) links in a web 
page, and (d) handles on geometric objects in PowerPoint™. 
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2. THE STARBURST ALGORITHM  
Figure 1 illustrates the main idea of the proposed Starburst tech-
nique: While the Voronoi tessellation behind a traditional snap-
to-target expands targets directly into target tiles (Figure 1a b), 
the proposed Starburst algorithm expands targets first into so-
called claim lines (Figure 1a c). Claim lines lead away from the 
centers of clusters and into empty screen space. Then claim lines 
expand into clickable surfaces (Figure 1d). The resulting layout is 
characterized by lines escaping from the cluster center, which 
gave the technique its name. 
By providing targets located inside a cluster with access to empty 
screen space, the Starburst algorithm is able to assign screen space 
to targets that remain small if expanded using the traditional Vo-
ronoi approach. If used on a device with limited input accuracy, 
such as a pen-based tablet or a touch screen-based kiosk system, 
this can lead to substantial performance improvements. In our 
user studies, expanding targets using Starburst led to a reduction 
in error rate by a factor of up to 9 compared to target expansion 
using traditional Voronoi tessellation. The proposed algorithm 
thereby makes the concept of target expansion applicable to sce-
narios that have not been accessible to these techniques so far. 

2.1. Walkthrough of the algorithm 
Figure 3 shows how the Starburst algorithm converts a given tar-
get layout (Figure 3a) into a Starburst tile layout (Figure 3i). 
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Figure 3: A walkthrough of the Starburst algorithm 

(a) Targets to be expanded, (b) Voronoi tessellation and identi-
fication of recipients, (c-d) clustering of targets into cliques, 

(e) nested rings, (f-g) claim line construction, (h) expansion of 
claim lines into tiles, and (i) final removal of claim lines. 

1. Identifying targets that require additional expansion. The Star-
burst algorithm begins by performing a Voronoi tessellation [12] 
on the targets (Figure 3b). The algorithm then identifies small tiles 
in that Voronoi layout. Tiles which have surfaces that fall below 
the average tile size by a threshold (we used a factor of 5) are 
tagged as tiles in need of expansion. In Figure 3b these recipients 
are highlighted in orange. All other targets are tagged donors. 
2. Organizing targets into cliques. Starburst manages the redistri-
bution of screen space based on what we call cliques. A clique is a 
set of collocated donors and recipients. Within a clique, donors 
provide the screen space used to expand recipients. The Starburst 

algorithm computes cliques in three steps. First, it creates cliques 
by clustering recipients based on adjacency. In Figure 3c this 
results in a clique with three recipients and a clique with a single 
recipient. Second, the algorithm adds all donors immediately ad-
jacent to a clique of recipients to that clique. In case a donor is 
adjacent to multiple cliques the donor is added to the clique with 
the smallest average tile size. In the case of Figure 3c this adds 
three donors to the single-recipient clique in the top left, all others 
to the three-recipient clique. Third, the Starburst algorithm adds 
additional donors if they are particularly large or if they are lo-
cated in an area in which the clique lacks good donors. In order to 
be included, a candidate must be adjacent to a clique and its sur-
face must significantly exceed the average tile size in that clique 
(we used a threshold factor of 5). In Figure 3b, all donors were 
already added in the previous step, so no further addition takes 
place. Once cliques have been formed, the Voronoi tessellation 
and the recipient/donor labeling is dropped (Figure 3d). 
The goal of the next steps is to provide targets located on the in-
side of a clique with access to screen space in the periphery of the 
clique. In order to reach the periphery, claim lines of inner targets 
need to pass between outer targets and so passages between tar-
gets become potential bottlenecks. We therefore create a represen-
tation that reflects these potential bottlenecks. 
3. Organizing targets into nested rings: Starburst organizes the 
targets of each clique into a set of nested rings (Figure 3e). The 
algorithm starts by computing the convex hull over all targets of a 
clique. All targets located on that convex hull form the outer ring. 
Then Starburst computes the second ring by computing a convex 
hull over the remaining targets, and so on. 
4. Routing claim lines. Next the algorithm creates the claim lines. 
The algorithm starts with the innermost ring and connects all its 
targets to the immediately enclosing ring (Figure 3f). Each claim 
line is connected to the nearest edge of the outer ring that can be 
reached with a straight line without intersecting the inner ring. 
This guarantees that claim lines never intersect. If multiple claim 
lines are connected to the same edge, the algorithm spaces them 
out equidistantly; single claim lines are connected in the middle of 
the ring edge. This helps balance the width of the tiles at the point 
where they pass between the targets. Then the algorithm repeats 
this step, i.e., all targets on the next ring plus the newly added 
targets are routed to the ring another layer out. In Figure 3e, the 
deepest clique has two nested rings, so a single iteration is suffi-
cient for connecting all targets to the outer ring. Now the algo-
rithm spreads the claim lines radially into the clique’s peripheral 
screen space (Figure 3g). 
5. Growing claim lines into tiles. In the last step, Starburst creates 
the target tiles. The algorithm does this by assigning all pixels on 
screen to the target with the closest claim line as shown in Figure 
3h. This completes the processing and Figure 3i shows the final 
result without the claim lines. 

2.2. Algorithms, complexity, and performance 
The overall complexity of the Starburst algorithm is O(n2) with n 
being the number of targets, which allows for real-time perform-
ance with dozens of targets or several hundred targets if only a 
subset of them moves. 
Details on the computational complexity: Step 1: We compute the 
initial Voronoi tessellation and its Delaunay triangulation [20] 
using a modified Fortune algorithm in O(n log n) time [12]. We 
compute the size of the Voronoi tiles in O(h), where h is number 
of edges, by reusing the quad edge data structure from the Fortune 
algorithm. Step 2: We compare the size of each tile with its O(h) 
neighbors in O(n2) worst case time (O(n log n) average time). 



 

 

Step 3: Constructing of the nested rings, known as onion-peeling, 
can be performed in O(n log n) time [25], but since we already 
computed the Delaunay triangulation we perform onion-peeling in 
O(n) time. Step 4: In the worst case, onion-peeling generates O(n) 
rings, in which case routing n claim lines through n rings requires 
O(n2) time. Step 5: We perform another Fortune Voronoi tessella-
tion, this time on the claim line segments, resulting in straight line 
segments and parabolic segments in O(n log n) time. 
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Figure 4: Examples of Voronoi tessellations (top of each pair) 
and the corresponding Starburst tessellation (bottom of each 

pair) for target layouts with 5, 10, or 15 targets and clusters of 
different tightness (layouts used in the user study). 

2.3. Sample layouts 
Figure 4 and Figure 5 show sample layouts generated using the 
Starburst algorithm described above and contrasts them with the 
corresponding Voronoi layouts. 
Figure 4 shows Starburst layouts for nine single-cluster target 
layouts, a subset of the layouts we evaluated experimentally in our 

user studies. The left column of Figure 4 shows tile layouts result-
ing from uniform target distributions. The Voronoi-based ap-
proach was designed for uniform target distributions [14] and 
works as expected. Tiles in the Starburst layouts are rounder, but 
overall of similar quality as the Voronoi tiles. The layouts in the 
center column, in contrast, contain clusters. The clusters cause the 
Voronoi layouts to degrade visibly and inside-the-cluster targets 
are assigned very small tiles. The Starburst layouts, in contrast, 
continue to offer reasonably-sized tiles for all targets. For target 
layouts containing tighter clusters this effect intensifies. The ver-
tical axis in this figure reflects the number of targets in each lay-
out. As we move down in the diagram the target count increases. 
As a result, the number of inaccessible targets in the Voronoi 
condition increases as well. The Starburst layouts, in contrast, 
remain functional. Figure 5 shows a selection of multi-cluster 
layouts. We see similar effects as in the single cluster examples. 
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Figure 5: Examples of Voronoi (top) and Starburst (bottom) 
tessellations for layouts with (a) 2, (b) 3, and (c) 4 clusters. 

Layouts generated by the Starburst algorithm are quite robust, i.e., 
insertion, removal, or relocation of targets impacts the tile layout 
only locally. This helps users build up spatial memory when using 
a Starburst layout over time. 

2.4. User interface for Starburst 
To outlines of Starburst tiles are irregular and therefore generally 
not “guessable”.  A user interface deploying Starburst therefore 
needs to convey tile shapes to the user. 
On devices supporting a hover state, such as table computers, 
target expansion using Starburst can be presented to the user in-
teractively—on hover as shown in Figure 6a-c. (a) By default, 
only screen content is visible. (b) As the pointer moves across the 
screen, targets within an n-pixel radius around the pointer get 
increasingly “excited” and the respective tile overlays turn 
opaque. The tile under the pointer is highlighted. (c) Tiles away 
from the pointer fade to transparent, yet stay opaque long enough 
to allow users to tap. 
Some devices, such as resistive touch screens or table top systems, 
do not support a tracking state. On these systems, tile boundaries 
are overlaid permanently onto screen content, rather than reveal-
ing them on hover. Tiles outlines can interfere with line-shaped 
document features as shown in Figure 6d. Such interference can 
often be reduced by encoding tile outlines using features not con-
tained in the underlying document (see multiblending [2]). 
Note that screen devices without a tracking state support none of 
the interactive expansion techniques mentioned earlier, such as 
Expanding Targets. Also Bubble Cursor is not applicable to such 
display systems; removal of the bubble visuals would reduce bub-
ble cursor to the underlying space partitioning algorithm, i.e., a 
Voronoi tessellation. 



 

 

2.5. Limitations 
Similar to other target expansion techniques, Starburst helps over-
come limitations in the clickable size of targets. A potential limi-
tation of Starburst is that it tends to generate long and narrow 
targets, a type of shape that can be more difficult to acquire than 
rounder, wider targets [15]. In the section “Improving space allo-
cation”, we describe extensions to the algorithm that result in 
wider target shapes. 
What remains are limitations based on the visual size of target 
layouts. Larger and tighter clusters result in thinner pathways at 
the point where claim lines pass the rings. When these pathways 
get so thin that they are hard to visually trace or when their thick-
ness reaches screen resolution, some targets cannot be expanded 
anymore and the Starburst algorithm has reached its limit. Fortu-
nately, as our user studies indicate, this point is reached much 
later than the motor space limits faced by Voronoi-based ap-
proaches. 
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Figure 6: (a-c) on-hover exploration and (d) permanent 
overlay of Starburst tessellation using an emboss effect 

3. RELATED WORK 
Starburst is related to target acquisition and labeling. 

3.1. Targeting and target expansion  
In order to help users acquire small targets, researchers have pro-
posed expanding targets in various ways. 
Expansion of targets in motor space: researchers have proposed 
slowing down the pointer motion on and around small targets 
(e.g., sticky icons [30], also suggested by [29], semantic pointing 
[9]). Such adjustments of control display ratio (or cd ratio) in-
crease the target’s size in motor space. Object pointing [16] sug-
gests removing space between targets altogether, letting users 
jump between targets. 
Approaches based on cd ratio adjustment require users to cross 
the target for the cd ration enhancement to become active [3]. 
Researchers have therefore proposed magnetism [5] and gravity 
[8]. Snap-and-go [3] uses invisible guides that direct the user’s 
motion while the actual propulsion still comes from the user. 
On touch and pen-based systems, motor space enhancements are 
typically applied by using take-off selection [24]. The 1:1 map-
ping of these screen devices is used only to determining the initial 
contact position; then users iterate under a local cd ratio adjust-
ment and commit by lifting their pen or finger off the screen 
(high-precision touch screen [26]). Benko et al. allow users to 
control cd-ratio manually using a second finger or the non-
dominant hand [7]. 

Expansion of targets in visual and motor space: Some researchers 
have proposed manual expansion of targets using an intermitted 
zoom step [1, 26]. In order to apply target expansion to touch and 
pen-based systems with land-on selection [24], the motor space 
size of targets needs to be increased permanently. Expanding 
targets, proposed by McGuffin and Balakrishnan, refers to an 
expansion of the target in visual and motor space as the pointer 
approaches it [22]. For an isolated target, the motor space of the 
target is determined by the expanded space and McGuffin et al. 
found that the targeting performance is largely determined by the 
size of that expanded state [21]. 
For clusters of adjacent targets, however, target expansion in vis-
ual space causes targets to push each other away [21]. Although 
the visuals of each target expand fully, the proximity of the adja-
cent targets affects a target’s ability to expand in motor space. In 
tightly packed clusters, no motor space expansion can take place. 
Expansion of cursor vs. expansion of targets: To prevent these 
problems, researchers have looked at ways to expand targets 
without pushing other targets away. Bubble cursor is one such 
solution [14]. It shows an on-hover bubble around the pointer that 
varies in size, such that it contains the closest target. Bubble cur-
sor has been applied to a variety of target acquisition techniques, 
such as the tractor beam [23]. There are three different ways of 
looking at bubble cursor. When focusing on its effect on motor 
space, bubble cursor divides screen space up resulting in a Vo-
ronoi diagram. The second way of looking at bubble cursor is to 
consider it a snap-to-target mechanism. And third, it can be con-
sidered an area cursor (sticky icons [30], also prince technique 
[18]) of adaptive size. With respect to the underlying motor space 
properties all three viewpoints are equivalent, although each per-
spective inspires a different visual user interface. 

3.2. Target acquisition as a labeling problem 
Another approach to associating small targets with larger motor 
space areas is to create a layer of handles—one handle for each 
target—that is overlaid onto the actual document content. Many 
programs, such as MS PowerPoint™ and Adobe Illustrator™ use 
little white circles to represent corners of graphical primitives that 
would otherwise measure only a single pixel (Figure 7a). In case a 
primitive is too small to fit all handles (Figure 7b, c), PowerPoint 
drops some of them, and finally (Figure 7d) it decouples the han-
dles from the actual object in order to prevent handles from over-
lapping. Despite the decoupling, the association between handle 
and target is clear because of their proximity. In the case of multi-
ple objects (Figure 7e), handles do overlap and once more it is 
difficult to acquire them. 
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Figure 7: Resize handles in MS PowerPoint™ 

The idea of decoupling handles from the target can be pushed 
further. While we are not aware of any such research specifically 
designed to help users acquire small targets, a lot of research has 
been done on labeling screen objects (e.g., [19]). Excentric labels 
[11] assign labels to an entire cluster of small objects by using an 
explosion-drawing-like display (Figure 8). To avoid overlap be-
tween labels, they are placed at a distance from the actual targets. 
To associate labels and targets, this approach relies on lines and in 
some cases also color. While the purpose of the labels is to hold a 
piece of text or an icon explaining the referenced object, one 
could imagine using external labels for the purpose of making the 
associated object clickable. 



 

 

 
Figure 8: Excentric labels [11] 

A potential limitation of this approach is that the lines produce 
clutter. This can make it hard for users to locate a label belonging 
to a particular target. Bell et al. propose an algorithm that mini-
mizes connecting lines by placing labels onto the actual object 
whenever the size and shape of the target permit it [6]. The use of 
such internal labels can reduce visual search as targets and label 
are associated by proximity, while users need to trace a line in 
order to locate an external label. 
Following this analogy, layouts produced by the Voronoi algo-
rithm consist exclusively of internal “labels”, at the expense of 
offering no control over their size. The Starburst algorithm, in 
contrast, keeps internal “labels” only if they are large enough. 
Otherwise it expands into an external “label”. Unlike external and 
excentric labels, however, Starburst creates lines, tiles, and targets 
in the same plane, so labels never occlude targets. In that sense, 
Starburst shares some properties with circuit board routing [10]. 

4. DESIGN DISCUSSION 
In this section, we give a brief overview of the design alternatives 
we explored and discuss their strengths and limitations. Our first 
two approaches were based on refining Voronoi tessellations. 

4.1. Refining Voronoi by moving boundaries 
Figure 9 shows a Voronoi layout and a modification obtained by 
moving and rotating a tile boundary. While this approach allowed 
for certain layout improvements, the use of straight tile bounda-
ries turned out to be a major limitation, because many target lay-
outs require non-straight boundaries (see, for example, the center 
areas of the layouts generated by Starburst in Figure 4). 

a b  
Figure 9: Boundary adjustment approach: (a) Voronoi Tessel-
lation; (b) expansion of the tile in the top left corner by moving 

and rotating its boundary. 

4.2. Refining Voronoi by reassigning pixels 
To address this limitation, we explored algorithms that repre-
sented screen space as pixels, rather than tile boundaries. Cellular 
automata and pixel rewriting allow creation of a rich spectrum of 
shapes [13]. The high degree of flexibility, however, made it dif-
ficult to control tile growth and to direct target growth towards 
available space. We often obtained inefficient shapes (Figure 10c) 
and improving one tile often came at the expense of making an-
other tile significantly worse (Figure 10d). 

4.3. Claim lines 
Based on these insights, we started looking for an algorithm that 
would offer flexibility and control. Claim lines provide tiles with 

a much-needed skeleton—a concept well understood in computer 
graphics [28]. That skeleton allowed us to direct target growth 
towards available space and prevent uncontrolled expansion. Yet, 
the resulting target tiles were not limited to straight edged or con-
vex shapes. 

a b c d  
Figure 10: Pixel rewriting approach: (a) Voronoi tessellation; 

(b) expansion of the top left target using pixel rewriting; 
(c, d) further expansion leading to undesirable target shapes. 

We went through several design iterations to determine a claim 
line skeleton that would offer enough flexibility to avoid bottle-
necks yet be simple enough to allow for good control. 
Our first attempt used single-segment claim lines, which it created 
by drawing a straight line from a common “center point” located 
inside the cluster through the individual targets. This approach 
turned out to be too limited and long strips of targets resulted in 
inefficient space usage. 
To address these shortcomings, we switched to multi-segment 
lines. We tried to avoid bottlenecks by making claim lines repel 
each other, yet that made it difficult to direct claim lines towards 
available screen space. 
Our final version, the nested ring approach, finally, reduced the 
number of line segments to what was absolutely necessary and 
offered a good handle on bottlenecks. This resulted in cleaner 
layouts, faster computation, and the desired degree of control. 

5. IMPLEMENTATION 
Figure 11 shows our Starburst test environment. It allows placing 
targets and generating tile layouts using a variety of algorithms. It 
was implemented using the .NET WinForms framework and runs 
on Microsoft Windows XP Tablet PC Edition. 

 
Figure 11: The Starburst test environment for Tablet PC 

6. USER STUDIES 
To objectively evaluate the performance of the Starburst algo-
rithm, we conducted two controlled experiments comparing Star-
burst with traditional Voronoi target expansion.  
The goal of the first experiment was to verify that our technique 
indeed reduces the motor skills required to select clustered targets. 
Voronoi and Starburst both make use of the entire screen space—
the average size of generated tiles is therefore the same. Starburst 



 

 

does not increase tile sizes compared to Voronoi, but balances 
tile sizes; its median target size is higher that Voronoi’s, not its 
mean. On the flipside, as discussed earlier, targets generated by 
Starburst tend to be longer and thinner. We were wondering how 
the two effects would play out against each other. The first study 
investigated this by highlighting the entire target tile (Figure 12a). 
After finding a very strong effect in the first study (a reduction of 
error by a factor of nine) we conducted a second study. This time 
we looked at a more realistic scenario simulating a user encoun-
tering a target layout for the first time or who works with a layout 
undergoing perpetual change. How effectively would users ac-
quire targets now? We implemented this scenario by highlighting 
the target only, not the tile, so that users had to visually examine 
layouts for every trial to determine where to tap (Figure 12b). 
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Figure 12: Participants tapped the start button and then the 

tile associated with the target. (a) In study 1, the entire target 
tile was highlighted, (b) in study 2 only the target itself. 

7. USER STUDY 1 
The participants’ task in the first study was to acquire targets with 
a pen on a tablet computer (Figure 12). Target acquisition was 
supported by expanding all targets in the target layout into a 
space-filling layout of tiles. Participants could acquire a target by 
acquiring any part of the associated tile. As mentioned above, the 
entire tile associated with the target was shaded red (Figure 12a). 
Our main hypothesis was that participants would acquire with less 
errors if layouts were generated using Starburst. 

7.1. Interfaces 
There were two interface conditions. In the Starburst condition, 
target tile layouts were generated using the algorithm described at 
the beginning of this paper. In the Voronoi condition, target tile 
layouts were generated using the traditional Voronoi approach. 
Both interfaces provided permanently visible tile boundaries, i.e., 
a set of black lines as shown in Figure 12. We chose this interface 
style, because it is available on all devices—unlike interface styles 
relying on hover. 

7.2. Target layouts 
Target layouts measured 256 x 256 pixels and 2” x 2” (5 x 5 cm) 
on screen. To keep the number of trials manageable and since 
multi-cluster layouts are structurally similar (Figure 5) we used 
uniform and single-cluster layouts only. Figure 4 show examples 
for each of the nine types of target layouts used in the study: each 
target layout contained 5, 10, or 15 targets; targets were organized 
either in a uniform distribution (uniform), in a normal distribution 
with standard deviation of 32 pixels (loose), or in a normal distri-
bution with standard deviation of 8 pixels (tight). For each of the 
nine layout types we randomly generated 5 target layouts. Each 
participant completed each layout using each of two interfaces. 
This resulted in 3 target counts x 3 densities x 5 layouts x 2 inter-
faces = 90 layouts. 

7.3. Task 
The participants’ task was to acquire targets using the pen. Each 
trial proceeded as follows. (1) The current target was highlighted 
in gray and the start button turned red as shown in Figure 12. (2) 
Participants tapped the start button (100 x 256 pixels, 0.8” x 
2”/2cm x 5cm) located right of the target layout. This was ac-
knowledged with a “click” sound and started the timer for that 
trial. (3) Participants acquired the highlighted target by tapping 
anywhere within its tile using the pen. This stopped the timer. 
Success/failure was confirmed using auditory feedback. 
While participants acquired one target per trial, performance was 
measured on a per-layout basis. A per-target comparison did not 
make sense, because target sizes and shapes of the tiles in a layout 
were not independent from each other; adding space to one target 
to make it easier to acquire came at the expense of making another 
one smaller and thus harder to acquire. 
This meant that participants needed to perform 10 times more 
target acquisitions for the same number of data points than in a 
normal target acquisition study. In order to keep the number of 
repetitions manageable, distance and angle of the target were not 
varied in this experiment. Instead we used the aforementioned 
start button located at a fixed position. While the start button 
placement could impact targeting times of individual targets, its 
effect balanced out across entire layouts. 

7.4. Procedure 
Each participant acquired every target of the 90 tile layouts once, 
i.e., there were 45 target layouts, each one tessellated differently 
for each of the two interface conditions. Each participant therefore 
performed a total of 3 levels of target counts (5, 10, or 15 targets) 
* 3 densities (uniform, loose, tight) * 5 layouts * 2 interfaces = 
900 trials. To minimize learning and ordering effects, the order of 
all 900 trials was randomized, so that in the general case the entire 
target layout changed from trial to trial. Overall, the user study 
took about 20 minutes per participant. 

7.5. Apparatus 
Participants performed all tasks using a Toshiba Portégé M200 
Tablet PC, with a 12.1” inch LCD monitor running the Microsoft 
Windows XP Tablet PC Edition operating system. The screen 
measured 7½” x 9¾” (19cm x 25cm), offered 1400 x 1050 pixel 
resolution (140dpi), and was used in portrait orientation. Partici-
pants performed all interaction using a pen. The tablet keyboard 
was hidden (“slate mode”). The tablet was placed on a table, but 
participants were allowed to hold the tablet in the lap instead, if 
they preferred (Figure 12). The experimental application was 
implemented using the .NET WinForms framework. 

7.6. Participants 
12 volunteers (10 male) between the ages of 20 and 40 were re-
cruited from our institution. Each one received a lunch coupon for 
our cafeteria as a gratuity for their time. All had experience with 
graphical user interfaces, TabletPC, and pen input. Nine partici-
pants were right handed. All had normal or corrected to normal 
vision and normal color vision. 

7.7. Hypotheses 
We had the following three hypotheses: 
(H1) Participants would acquire target layouts faster and with 
fewer errors for the clustered target layouts (loose and tight condi-
tions) when using the Starburst interface. 
(H2) The performance benefit of the Starburst condition would 
increase with the number of targets in a layout. The reason is that 
a higher target count would cause more targets to be enclosed 
inside clusters in the Voronoi condition. 



 

 

(H3) The performance benefit of the Starburst condition would be 
greater in the tight condition. In the Voronoi condition, the tighter 
packing would make tiles of targets located inside a cluster even 
smaller. 
We did not expect any performance benefits for the Starburst 
interface in the uniform layout conditions because neither of the 
techniques should produce any small targets. 

7.8. Results 
Performance was measured in error rates and targeting times for 
each condition.  
7.8.1. Error rates 
We aggregated selection errors across all 5 layouts per condition 
to compute an error metric for each condition. We then performed 
a 3 (TargetCount) × 3 (Density) × 2 (Technique) within subjects 
analysis of variance. We found significant main effects for all 
three variables. For TargetCount (F(2,22)=92.5, p<<0.001), accu-
racy decreased as the number of targets increased. Similarly for 
Density (F(2,22)=158.4, p<<0.001), as the density increased, so 
did the error rate. Finally, for Technique (F(1,11)=272.1, 
p<<0.001), Voronoi was associated with significantly higher error 
rates than Starburst (14% vs. 2% error). 
In addition, all interactions tested were significant: TargetCount x 
Density, F(4,44)=24.1, p<<0.001; TargetCount x Technique, 
F(2,22)=51.2, p<<0.001; Density x Technique, F(2,22)=204.8, 
p<<0.001; and TargetCount x Density x Technique, F(4,44)=12.9, 
p<<0.001. Figure 13 illustrates all the error rates for each tech-
nique and all display conditions. Post hoc paired t-tests were per-
formed comparing each technique at each condition and signifi-
cant differences are denoted by “*” (Bonferroni adjustment for 
multiple tests, p<0.005).  

5 10 15 5 10 15 5 10 15
0

5

10

15

20

25

30

35

40

45

Er
ro

r r
at

e 
(%

 ±
 S

EM
) Starburst

Voronoi

Uniform Loose Tight

∗

∗

∗

∗

∗

∗

 
Figure 13: Error rates over layout types (+/- std error of mean) 

7.8.2. Target acquisition times 
Before analyzing target acquisition times, outliers were removed 
from the analysis based on a heuristic of any acquisition longer 
than 2 seconds (this is well over 3 standard deviations from the 
mean for a given condition). A total of 55 out of 10745 trials were 
removed from the data (45 from the Voronoi conditions). 
As with error rates, for time analyses we collapsed target acquisi-
tion times across all 5 layouts per condition, computing the me-
dian target acquisition time for each condition. We performed a 3 
(TargetCount) × 3 (Density) × 2 (Technique) within subjects 
analysis of variance for acquisition time. We found significant 
main effects for all three variables. For TargetCount 
(F(2,22)=244.4, p<<0.001), acquisition time increased as the 
number of targets increased. Similarly for Density (F(2,22)=76.3, 
p<<0.001), as the density increased, so did target acquisition time. 
Finally, for Technique (F(1,11)=65.9, p<<0.001), Starburst was 
significantly faster than Voronoi. 
In addition, all interactions tested were significant: TargetCount x 
Density, F(4,44)=20.7, p<<0.001; TargetCount x Technique, 

F(2,22)=11.0, p<0.01; Density x Technique, F(2,22)=47.5, 
p<<0.001; and TargetCount x Density x Technique, F(4,44)=7.8, 
p<0.01. Figure 14 illustrates targeting times for each technique 
and all display conditions. Post hoc paired t-tests were performed 
comparing each technique at each condition and significant dif-
ferences are denoted by “*” (Bonferroni adjustment for multiple 
tests, p<0.005).  
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Figure 14: Targeting times over layout types (+/- standard 

error of the mean). 
7.9. Discussion 
In summary, the study results support all three hypotheses. Par-
ticipants acquired tiles layouts generated using Starburst faster 
and with a substantially lower error rate than tiles generated by 
the Voronoi conditions. This supports our hypothesis that the 
improved balancing of target sizes outweighs the drawback result-
ing from the degeneration of tile shapes. Tighter clusters and more 
targets increased the gap in performance. 

8. USER STUDY 2 
As mentioned earlier, the purpose of the second study was to in-
vestigate the more realistic scenario where users encounter a tar-
get layout for the first time. The second study was identical to the 
first, except: 
Interfaces: only the target itself was highlighted, but not the cor-
responding tile, so that users had to visually examine the layout to 
determine where to click. Since targets were very small, they were 
also provided with a pale red glow to make them easier to locate, 
as shown in Figure 12b. As before, targets were revealed upon 
completion of the previous trial. All participants tapped start in 
immediate succession to completing a trial and did not inspect 
layouts before tapping start. 
Additional density condition: We only tested the 5 and the 10 
target conditions, but not the 15 target conditions (Figure 5). Par-
ticipants therefore now performed 2 target counts x 3 densities x 5 
layouts x 2 interfaces = 60 layouts. 
Participants: 6 participants (5 male); all with GUI experience; 2 
Tablet PC users and pen input experience; 5 right handed and one 
left handed. All had normal or corrected to normal vision and 
normal color vision. 
Hypotheses: As in the first study, we expected to see a benefit in 
error rate. Since the visual analysis of the Starburst layout would 
take time, we did not expect to see a benefit in task time though. 

8.1. Results 
Performance was measured in error rates and targeting times for 
each condition.  
8.1.1. Error rates 
Analyses for Study 2 were nearly identical to Study 1. While the 
accuracy rates tended to be slightly lower (reflecting the increased 
task difficulty), the pattern was the same. We performed a 2 (Tar-
getCount) × 3 (Density) × 2 (Technique) within subjects analysis 
of variance. We found significant main effects for all three vari-
ables. For TargetCount (F(1,5)=42.9, p<0.001), accuracy de-



 

 

creased as the number of targets increased. Similarly for Density 
(F(2,10)=97.9, p<<0.001), as the density increased, so did the 
error rate. Finally, for Technique (F(1,5)=37.6, p<0.002), Voronoi 
was associated with significantly higher error rates than Starburst 
(10% vs. 4% error). 
Unlike study 1, only 2 interactions were significant: TargetCount 
x Density, F(2,10)=17.8, p<0.001; and Density x Technique, 
F(2,10)=39.6, p<<0.001. Figure 15 illustrates all the hit rates for 
each technique and all display conditions. Post hoc paired t-tests 
were performed comparing each technique at each condition and 
significant differences are denoted by “*” (Bonferroni adjustment 
for multiple tests, p<0.008).  
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Figure 15: Error rates over layout types (+/- std error of mean) 

8.1.2. Target acquisition times 
As expected, the time for target acquisition was generally longer 
than in study 1, reflecting the greater difficulty of the task. We 
performed a 2 (TargetCount) × 3 (Density) × 2 (Technique) 
within subjects analysis of variance for acquisition time. We 
found significant main effects for all three variables. For Target-
Count (F(1,5)=18.3, p<0.001), acquisition time increased as the 
number of targets increased. Similarly for Density (F(2,10)=6.49, 
p<0.02), as the density increased, so did target acquisition time. 
Finally, for Technique (F(1,5)=10.7, p<0.02), Starburst was sig-
nificantly faster than Voronoi. 
No interactions were significant. Figure 16 illustrates targeting 
times for each technique and all display conditions. As above, 
post hoc paired t-tests were performed comparing each technique 
at each condition and significant differences are denoted by “*” 
(Bonferroni adjustment for multiple tests, p<0.008).  
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Figure 16: Targeting times over layout types (+/- standard 

error of the mean) 

8.2. Discussion 
Also the second study results support our hypotheses. While the 
visual analysis of the Starburst layout resulted in longer task times 
and higher error rates in both interface conditions compared to the 
first study, the Starburst layout still outperformed the Voronoi 
layout on both measures. 

9. IMPROVING SPACE ALLOCATION 
The Starburst algorithm, as described throughout this paper, im-
proves target tile layouts by reallocating screen space from donors 
to recipients. While the algorithm delivers good results for the 
average case, it can lead to suboptimal results if the supply of 
screen space is distributed unequally around a cluster. In the ex-
ample shown in Figure 17a, for example, the five claim lines in 
the bottom left access only limited amounts of screen space. In the 
following, we present an extension of our algorithm that causes it 
to take the availability of screen space into account. The extension 
replaces step 4 of the original algorithm as follows. 
4a. Locate available screen space. To probe space availability 
this algorithm casts rays from the outer ring into the periphery, 
intersects them with the clique boundaries (dashed and dotted 
lines in Figure 17b), and measures the length of the ray. Sectors 
that are too “shallow” are excluded from the following space allo-
cation steps (finely dotted lines in Figure 17b). 
4b. Place claim line endpoints. The algorithm places claim line 
endpoints into the sectors marked as available. For a reasonably 
small number of targets per clique, such as 20, the algorithm parti-
tions screen space radially as shown in Figure 17c. 
4c. Route claim lines between targets and endpoints. The algo-
rithm descends claim lines from the endpoints to the closest seg-
ment of the outer ring. Then it flips pairs of connections until 
claim lines do not intersect each other anymore. It repeats this 
step for all remaining ring layers. 

a b

c d

a b

c d  
Figure 17: (a) The 5 dashed claim lines have limited access to 
screen space. The extension (b) locates available screen space, 
(c) places claim line endpoints into the available screen space, 

and then (d) routes claim lines from endpoints to targets. 

Figure 18 juxtaposes a tile layout generated using the basic Star-
burst algorithm with the corresponding layout produced by the 
extended version. 

a b  
Figure 18: (a) A tile layout generated using the basic Starburst 

method and (b) using the extended version 



 

 

For clusters with more than 20 targets, spreading claim line end-
points along a single arc produces very thin tiles that can be hard 
to acquire [15]. To avoid this, our algorithm handles large num-
bers of endpoints by laying them out in two or more layers as 
shown in Figure 19a (this example uses the 8 targets layout from 
Figure 18 to allow juxtaposing the resulting layouts). When grow-
ing claim lines into tiles in step 5, endpoints are given additional 
“attraction”. This causes tiles to inflate around their endpoints, 
which provides tiles with a “handle”, making them easier to ac-
quire. Figure 19b shows the resulting tile layout. 

a b  
Figure 19: (a) Organizing claim line endpoints in multiple 

layers (b) helps thicken targets in this tile layout. 

10. CONCLUSIONS 
In this paper, we presented Starburst, an algorithm that extends 
the concept of target expansion to target layouts that contain clus-
ters. Our user studies support our claims that the presence of tar-
get clusters limits the applicability of Voronoi-based target expan-
sion techniques and demonstrated substantial performance bene-
fits for the proposed Starburst technique.  
As future work we plan to extend the algorithm to allow it to ex-
pand starting with arbitrary target shapes, such as buttons in 
graphical user interfaces. We also plan to experimentally evaluate 
Starburst’s on-hover user interface, e.g., by comparing it against 
bubble cursor. 
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